Обыкновенные дифференциальные уравнения

Кратные, криволинейные, поверхностные интегралы.

16.1. Двойной интеграл.

 16.1.1. Определение двойного интеграла. Теорема существования двойного интеграла. Пусть на плоскости Oxy задана ограниченная замкнутая область D с кусочно-гладкой границей, и пусть на области D определена функция f(x, y).

Разобьём область D произвольным образом на n подобластей D1, D2, D3, …, Dn, (не имеющих общих внутренних точек). Символом s(Di) будем обозначать площадь области Di; символом diam(D)здесь и дальше будет обозначаться наибольшее расстояние между двумя точками, принадлежащими области D:

;

символом d обозначим наибольший из диаметров областей Di: .

В каждой из подобластей Di (i = 1,2, …, n) выберем произвольную точку Pi = (xi, yi), вычислим в этой точке значение функции f(Pi ) = f (xi, yi), и составим интегральную сумму .

 Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения области D на подобласти Di, ни от выбора точек Pi, то функция f(x, y) называется интегрируемой по области D, а значение этого предела называется двойным интегралом от функции f(x, y) по области D и обозначается .

 Если расписать значение f(P) через координаты точки P, и представить ds как ds = dx dy, получим другое обозначение двойного интеграла: . Итак, кратко, .

 Теорема существования двойного интеграла. Если подынтегральная функция f(x, y) непрерывна на области D, то она интегрируема по этой области.

16.1.2. Геометрический смысл двойного интеграла. Геометрический смысл каждого слагаемого интегральной суммы: если , то  - объём прямого цилиндра с основанием Di высоты f(Pi); вся интегральная сумма  - сумма объёмов таких цилиндров, т.е. объём некоторого ступенчатого тела (высота ступеньки, расположенной над подобластью Di, равна f(Pi)). Когда , это ступенчатое тело становится всё ближе к изображенному на рисунке телу, ограниченному снизу областью D, сверху - поверхностью z = f(x, y), с цилиндрической боковой поверхностью, направляющей которой является граница области D, а образующие параллельны оси Oz. Двойной интеграл  равен объёму этого тела.


Двойной и тройной интеграл примеры решения задач