Механические и физические приложения поверхностного интеграла

Поверхностные интегралы.

 16.4.4. Поверхностный интеграл второго рода (по координатам).

 16.4.4.1. Определение поверхностного интеграла второго рода. Пусть в пространстве переменных x,y,z задана ограниченная кусочно-гладкая двусторонняя поверхность, на которой введена ориентация (т.е. с помощью единичного вектора нормали в какой-либо точке  задана сторона поверхности), и на которой определена функция R(x,y,z). Разобьём поверхность на  частей , на каждой из частей  выберем произвольную точку , найдём , нормаль  в точке  к выбранной стороне поверхности, и площадь  проекции части  на плоскость ОХУ. В интегральную сумму слагаемое  возьмём со знаком "+", если  (т.е. если угол   между  и осью Oz - острый; проекция  на орт  оси Oz положительна), и со знаком "-", если . В результате интегральная сумма будет иметь вид . Если существует предел последовательности интегральных сумм при , не зависящий ни от способа разбиения поверхности  на части , ни от выбора точек , то функция R(x,y,z) называется интегрируемой по поверхности , а значение этого предела называется поверхностным интегралом второго рода, или поверхностным интегралом по координатам х,у, и обозначается .

  Теорема существования. Если функция R(x,y,z) непрерывна на поверхности , то она интегрируема по этой поверхности.

Если на поверхности , вместе с функцией R(x,y,z), определены функции P(x,y,z) и Q(x,y,z), то, так же, как и интеграл , определяются интегралы  и ; в приложениях, как мы видели из рассмотренной в начале раздела физической задачи, обычно рассматривается сумма этих интегралов, которая обозначается .

16.4.4.2. Свойства поверхностного интеграла второго рода. Для этого интеграла, как и для криволинейного интеграла второго рода, имеет смысл формулировать следующие свойства: линейность, аддитивность и зависимость поверхностного интеграла от выбора стороны поверхности: при изменении ориентации поверхности интеграл меняет знак.


Дифференцируемость функции комплексной переменной решения задач по математике