Основные правила дифференцирования

Производные и дифференциалы высших порядков.

 6.11.1. Производные высших порядков. Формула Лейбница. Пусть функция   имеет производную y'(x) в каждой точке интервала (а,b). Функция y'(x) тоже может иметь производную в некоторых точках этого интервала. Производная функции y'(x) называется второй производной (или производной второго порядка) функции и обозначается . Функция y''(x) тоже может иметь производную, которая  называется третьей производной (или производной третьего порядка) функции и обозначается . Вообще n-ой производной (или производной n-ого порядка) функции называется производная от производной n-1-го порядка (обозначения: ).

Производные высших порядков последовательно вычисляются по уже известным формулам и правилам. Пусть, например, . Тогда , ,  и т.д. В некоторых случаях можно получить общее выражение для n-ой производной функции: пусть . Тогда , , , и вообще . Аналогичную формулу можно получить для косинуса. Другой пример: . Если представить эту функцию в виде , то ,, и вообще .

 Для высших производных произведения функций справедлива формула Лейбница:

. Эта формула внешне похожа на формулу бинома Ньютона и, также как формула бинома Ньютона, может быть доказана методом математической индукции. Для низших производных:

; ; .

6.11.2. Дифференциалы высших порядков также определяются индуктивно: дифференциалом второго порядка (или вторым дифференциалом) функции называется дифференциал от её первого дифференциала; дифференциалом третьего порядка называется дифференциал от второго дифференциала; и вообще, дифференциалом n-го порядка функции называется дифференциал от её n-1-го дифференциала. При вычислении высших дифференциалов необходимо учитывать, что дифференциал независимой переменной - произвольная и независимая от х величина, которая при дифференцировании рассматривается как постоянная. Поэтому ; ; …., .

6.11.3. Неинвариантность формы старших дифференциалов относительно замены переменной. В разделе 6.8.2. Инвариантность формы первого дифференциала мы доказали, что независимо от того, является ли х независимой переменной, или сама эта переменная х является функцией другой переменной t, формула для нахождения дифференциала первого порядка одна и та же: dy = y'dx. Покажем, что уже второй дифференциал этим свойством не обладает. Если х - независимая переменная, то d 2y = y"dx2. Если x = j(t), то d 2y = d(dу) = d(y'хdx) =

= d(y'х)dx + y'хd(dx). Для первого слагаемого вследствие инвариантности формы первого дифференциала d(y'х) = y"ххdx, для второго d(dx) = d 2x, поэтому окончательно d 2y = y"ххdx2+ y'хd 2x, что отличается от случая независимой переменной. Причина этого понятна: если х независимая переменная, то при нахождении второго дифференциала dx рассматривается как независимая от x константа; в случае x = j(t) дифференциал dx определяется дифференциалом dt.

6.11.4. Старшие производные функции, заданной параметрически. В разделе 6.10.1. Производные функций, заданных параметрически, для первой производной функции

  была получена формула . Если применить эту формулу к функции

  то получим: ; аналогично, применяя ту же формулу ко второй производной , получим выражение для третьей производной, и т.д. Так, для функции  мы получили . Найдем вторую производную: .

  6.11.5. Старшие производные функции, заданной неявно, находятся последовательно, в соответствии с определением старших производных. Так, для неявно заданной зависимости у от х  мы получили . Найдём вторую производную: . Дальше можно найти третью и т.д. производные.


Предел функции одной переменной