Математика - множества, функции, пределы, производная

Комплексные числа. Многочлены. Рациональные функции.

9.1. Комплексные числа.

 9.1.1. Определениё комплексного числа.

Опр.9.1.1. Комплексным числом  будем называть упорядоченную пару действительных чисел , записанную в форме , где - новый объект ("мнимая единица"), для которого при вычислениях полагаем .

 Первая компонента комплексного числа , действительное число , называется действительной частью числа , это обозначается так: ; вторая компонента, действительное число , называется мнимой частью числа : .

 Опр.9.1.2. Два комплексных числа  и  равны тогда и только тогда, когда равны их действительные и мнимые части: .

 Множество комплексных чисел неупорядочено, т.е. для комплексных чисел не вводятся отношения "больше" или "меньше".

 Геометрически комплексное число  изображается как точка с координатами  на плоскости. Плоскость, на которой изображаются комплексные числа, называется комплексной плоскостью .

Опр.9.1.3. Суммой двух комплексных чисел  и  называется комплексное число , определяемое соотношением , т.е. , .

 Это означает, что геометрически комплексные числа складываются как векторы на плоскости, покоординатно.

Опр.9.1.4. Произведением двух комплексных чисел  и  называется комплексное число , определяемое соотношением , т.е. .

 Для двух комплексных чисел с нулевой мнимой частью  и  получим , , т.е. для множества комплексных чисел с нулевой мнимой частью операции сложения и умножения не выводят за пределы этого множества. Отождествим каждое такое число с действительным числом , равным действительной части комплексного числа, т.е. будем считать, что . Теперь действительные числа - подмножество множества комплексных чисел . Далее, числа с нулевой действительной частью, т.е. числа вида , называются мнимыми числами. Мнимое число с единичной мнимой частью будем записывать просто как : ; квадрат этого числа, по определению умножения, равен , что обосновывает данное в опр.9.1.1 свойство "мнимой единицы". 

Легко убедиться, что операция сложения на множестве комплексных чисел   имеет свойства, аналогичным аксиомам I.1- I.4, которым удовлетворяет операция сложения действительных чисел (см. раздел 3.1. Аксиомы действительных чисел):

I.1. ;

I.2.   ;

I.3. Существует такой элемент , что  для . Этот элемент - число .

I.4. Для каждого элемента  существует такой элемент , что . Этот элемент - число . Сумма чисел  и  называется разностью чисел  и : .

Прежде, чем определить операцию деления комплексных чисел, введём понятия сопряжённого числа и модуля комплексного числа.

Опр.9.1.5. Число  называется числом, сопряжённым к числу . Часто сопряжённое число обозначается также символом .

Опр.9.1.6. Действительное число  называется модулем комплексного числа .

Найдём произведение сопряжённых чисел:  . Таким образом,  - всегда неотрицательное действительное число, причём .

Для нахождения частного комплексных чисел  домножим числитель и знаменатель на число, сопряжённое знаменателю: .

 Для операции умножения справедливы свойства

II.1. ;

II.2. ;

II.3. Произведение числа  на любое число  равно ;

II.4. Для каждого числа  существует такое число , что , ;

Операции сложения и умножения подчиняется закону дистрибутивности:

III.1. .

  Операция сопряжения имеет следующие свойства:

IV. .

Примеры выполнения арифметических действий с комплексными числами: пусть , . Тогда ;  ; .


Примеры вычисления производной