Электротехника Методические указания по выполнению контрольной работы

Векторная алгебра
и аналитическая геометрия
Вычисление пределов и функций
Вычисление производной и интеграла
Математика примеры решения задач
Контрольная по математике
Элементы теории множеств.

Множества высших мощностей.

Кванторы
Математические теоремы
Действительные числа
Предел функции одной переменной.
Гиперболические функции.
Определение последовательности и её предела.
Скалярное и векторное поле
Предел функции.
Непосредственное вычисление пределов.
Раскрытие неопределённостей
Непрерывность рациональных функций:
Классификация точек разрыва
точки разрыва первого рода
Определение производной функции
Производная обратной функции
Примеры вычисления производной.
Основные правила дифференцирования
Производные функций, заданных параметрически и неявно.
Формула Лейбница.
Теорема Ферма
Теорема Ролля
Теорема Коши
Формула Тейлора
Нахождение пределов с помощью формулы Тейлора
Условие постоянства функции
Условия монотонности функции
Точки перегиба.
Асимптоты графика функции
Комплексные числа
Многочлены с комплексными коэффициентами
Вычисление площади криволинейной трапеции
Формула Ньютона-Лейбница.
Обыкновенные дифференциальные
уравнения
Теория линейных уравнений.
Двойной интеграл
Найти общее решение уравнения
Тройной интеграл
Несобственные кратные интегралы
Криволинейные интегралы
Формула Грина
Механические и физические приложения поверхностного интеграла 1-го рода.
Поверхностные интегралы
Скалярное поле
Дивергенция векторного поля
Теория вероятности
Функция комплексной переменной
Дифференцируемость функции комплексной переменной
Интеграл от ФКП
Периодические функции
Обращение преобразования Лапласа
Задача Коши
Соленоидальное векторное поле
Оператор Лапласа
Необходимый признак сходимости ряда
Решение задач по физике примеры
Общие свойства гармонических колебаний.
второй закон динамики
Задачи для самостоятельного решения
параметры затухающих колебаний
Переменный ток.
Волны
Плотность потока энергии
Интерференция света
Наблюдение интерференции с помощью бипризмы
Дифракция света
Построение векторных диаграмм при дифракции Френеля
Дифракция на щели
Угловая дисперсия
Поляризация света
Курсовая по электротехнике
Курс лекций по физике
Закон сохранения импульса
Кинетическая энергия и работа
Потенциальная энергия
Полная механическая энергия
Гравитация Законы Кеплера
Формула Циолковского
Момент инерции
Механические колебания
Гармонический осциллятор
Принцип относительности Галилея
Преобразования Лоренца
Математический маятник
Машиностроительное черчение
Дуга сопряжения
Построение внешнего сопряжения
Аксонометрическая проекция
сечения
разрезы
Варианты индивидуальных заданий
Резьба на чертежах
крепёжные  изделия
соединения сварные, паяные, клеевые, заклёпочные
Ручная  электродуговая сварка
Выполнение чертежей в AutoCAD
Инженерная графика
Геометрический аппарат проецирования
Основные геометрические фигуры
плоские и пространственные кривые
Метод концентрических сфер
Основные задачи преобразования
Способ прямоугольного треугольника
Физика Кинематика
примеры решения задач
Динамика движения твердого тела
Работа силы
Кинетическая энергия
Элементы гидродинамики
Электростатика
Принцип суперпозиции
Поверхностная плотность заряда
Потенциал поля точечного заряда
Энергия электростатического поля
Правила Кирхгофа
закон Ома
Сила Ампера
магнитное поле
Энергия магнитного поля
Методика расчёта линейных
электрических цепей переменного
тока
История дизайна
История абстрактного искусства
Послевоенное абстрактное искусство в России
Абстрактное  искусство как явление культуры
Историческое  развитие абстрактного метода в живописи
Символическая тенденция в абстрактном искусстве
супрематизм
западное абстрактное искусство
Американский абстрактный экспрессионизм
Стиль АРТДЕКО
Фовизм
Супрематизм К. Малевича
Конструктивная живопись
Живописный рельеф
реальности и абстракции
Экология энергетики
Анализ работы электрофильтров
Ядерные взрывы
Методы и технологии очистки дымовых газов
Регенеративные методы
Ядерное топливо
Радиоактивные вещества, образующиеся при работе АЭС.
Математическое моделирование экологических систем
Информационное описание экосистем
Локальные компьютерные сети
Определение локальных сетей и их топология
Среды передачи информации
Пакеты, протоколы и методы управления обменом
Уровни сетевой архитектуры
Стандартные локальные сети
Защита информации в локальных сетях
Алгоритмы сети Ethernet/Fast Ethernet
Стандартные сегменты Ethernet и Fast Ethernet
Оборудование Ethernet и Fast Ethernet
Выбор конфигурации сетей Ethernet и Fast Ethernet
Проектирование сети Ethernet и Fast Ethernet
Подключение к глобальным сетям с помощью модемов
Базы данных
Беcпроводная связь
Новые возможности мобильного Internet
Стандарты беспроводной связи
Технологии передачи сообщений

Вопросы и ответы

 

В неразветвлённой цепи переменного тока R1=20 Ом, R2=4 Ом, XL1=4 Ом, XL2=6 Ом, XC1=2 Ом. Подведённое напряжение U =40 В. Определить: полное сопротивление Z, ток I, коэффициент мощности cosφ, полную мощность S, активную мощность P, реактивную мощность G.

Пример 2. Катушка с активным сопротивлением R1 = 4 Ом и индуктивным  Ом соединена параллельно с конденсатором, ёмкостное сопротивление которого   Ом и активным сопротивлением R2 =6 Ом.

Пример 3. В трёхфазную четырехпроводную сеть включили звездой несимметричную нагрузку: в фазу А - активное сопротивление RA =11 Ом, в фазу В - емкостное сопротивление XB=10 Ом, в фазу С - активное сопротивление RС=8 Ом и индуктивное XС=6 Ом. Линейное напряжение сети UН=380 В.

Пример 4. В трёхфазную сеть включили треугольником несимметричную нагрузку: в фазу АВ -конденсатор с ёмкостным сопротивлением XAB=10 Ом; в фазу ВС - катушка с активным сопротивлением RBC=10 Ом и индуктивным XBC =3 Ом; В фазу СА - активное сопротивление

Однофазный понижающий трансформатор номинальной мощностью Sном = 500 ВА служит для питания ламп местного освещения металлорежущих станков. Номинальные напряжения обмоток  Uном 1 = 380 В; Uном 2 = 24 В. К трансформатору присоединены десять ламп накаливания мощностью 40 Вт каждая, их коэффициент мощности cosφ2 = 1,0. Магнитный поток в магнитопроводе Фm = 0,005 Вб. Частота тока в сети ƒ = 50 Гц. Потерями в трансформаторе пренебречь. Определить: 1) номинальные токи в обмотках; 2) коэффициент нагрузки трансформатора; 3) токи в обмотках при действительной нагрузке; 4) числа витков обмоток; 5) коэффициент трансформации.

Задача №7 относится к расчету выпрямителей переменного тока, собранных на полупроводниковых диодах. Подобные схемы широко применяются в различных электронных устройствах и приборах. При решении задач следует помнить, что основными параметрами полупроводниковых диодов являются допустимый ток Iдоп, на который рассчитан данный диод, и обратное напряжение Uобр, выдерживаемое диодом без пробоя в непроводящий период.

Пример. Для питания постоянным током потребителя мощностью Pd=300 Вт при напряжении Ud=20 В необходимо собрать схему однополупериодного выпрямителя, использовав имеющиеся стандартные диоды Д242А.

Определение устойчивости полосового фильтра. Определим устойчивость выбранного согласно варианту полосового фильтра по критерию Рауса-Гурвица.

Определим спектральную плотность  и корреляционную функцию  выходного напряжения заданного ПФ. Будем считать, что цепь – в установившемся режиме, тогда возможно применение спектрального метода для анализа прохождения заданного СП через заданную линейную цепь.

Расчет эффективной ширины спектра и интервала корреляции выходного напряжения .

Определение устойчивости фильтра нижних частот. Определим устойчивость выбранного согласно варианту фильтра нижних частот по критерию Рауса-Гурвица.

Расчет и построение графиков модуля и аргумента передаточной функции ФНЧ. Найдем модуль и аргумент комплексного коэффициента передачи фильтра нижних частот.

Электростатика Решение задачи 1. Рассмотрим равновесие сил, приложенных к отдельному заряду: , где  – кулоновская сила отталкивания зарядов,   – сила упругости одного резинового шнура,   – его удлинение

Постоянный ток

Магнитное поле, колебания, волны Решение задачи Плотность тока в ленте равна , с другой стороны, , где  – средняя скорость движения носителей заряда в ленте. На элементарный заряд  действует магнитная сила Лоренца , и электрическая сила , где  – напряженность электрического поля в ленте

Оптика Луч света от монеты падает на нижнюю грань куба под углом , преломляется на нижней грани под углом , падает на боковую грань под углом  и выходит из боковой грани под углом . Монета перестает быть видна, если , но тогда , а это отвечает показателю преломления .

Указания к решению задачи №1

Перед выполнением контрольной работы ознакомьтесь с общими методическими указаниями. Решение задач сопровождайте краткими пояснениями.

Решение задач этой группы требует знания законов Ома, для всей цепи и её участков, первого и второго законов Кирхгофа, методики определения эквивалентного сопротивления цепи смешанном соединении резисторов, а также умения вычислять мощность и работу электрического тока.

Пример 1.

Для схемы, приведённой на рис. 41 а, определить эквивалентного сопротивления цепи RAB и токи в каждом резисторе, а также расход электрической энергии цепью за 8ч работы.

Решение. Задача относится к теме “Электрические цепи постоянного тока”. Проводим поэтапное решение, предварительно обозначив стрелкой, ток в каждом резисторе, индекс тока должен соответствовать номеру резистора, по которому он проходит.

1.Определяем общее сопротивление разветвления CD, учитывая, что резисторы R3 и R4 соединены между собой последовательно, а с резистором R5- параллельно:

  Ом

2. Определяем общее сопротивления цепи относительно зажимов СЕ.

Так как резистор RCD и R2 включены параллельно, то:

  Ом (рис.41, в).

3. Находим эквивалентное сопротивление всей цепи:

6

  Ом (рис.41, г).

4. Определяем ток в сопротивлениях цепи. Так как напряжение UАВ приложено ко всей цепи, а RАВ=10 Ом, то, согласно закону Ома:

  А.

Внимание! Нельзя последнюю формулу писать в виде:

так как UАВ приложено ко всей цепи, а не к участку R1

Для определения тока I2 нужно найти напряжение на резисторе R2, т.е. UСЕ. Очевидно , UCE меньше UAB на величину потери напряжения в резисторе R1, т.е. UCE=UAB-I1R1=300-30*8=60 В. Тогда

 А.

Так как UCE=UCD, то можно определить токи I3,4 и I5:

  А;  А

С помощью Кирхгофа, записанного для узла С, проверим правильность определения токов:

 , 30=20+4+6.

5. Расход энергии цепью за 8 ч работы:

 Вт*ч=72 кВт*ч

Указания к решению задач 2, 3 и 4.

Эти задачи относятся к неразветвлённым и разветвленным цепям и перемоткам, трёхфазным цепям переменного тока. Перед их решениям необходимо изучить соответствующие разделы. Ознакомитесь с методикой построения векторных диаграмм.

На главную