Курс лекций по физике Гравитация Гармонический осциллятор

Математический маятник

Одним из самых простых примеров гармонического колебания есть колебательное движение математического маятника. Математическим маятником называют материальную точку, подвешенную на невесомой и нерастяжимой нити, которая колеблется в вертикальной плоскости под действием силы тяжести. Когда система находится в покое, то сила тяжести уравновешивается силой натяжения нити . Если шарик отклонить на некоторый угол , то равнодействующая  силы натяжения и силы тяжести  пытается повернуть шарик в положение равновесия. Горизонтальная составляющая силы тяжести (возвращающая сила) равна

. (11.37)

Поскольку зависимость такой силы от угла  нелинейна, то колебания маятника не будут гармоническими. Для малых углов  можно записать, что

  (11.38)

(где  - горизонтальное смещение маятника от положения равновесия), и выражение для возвращающей силы будет иметь вид

,  (11.39)

где  - длина маятника. В этом случае сила  пропорциональна углу , потому колебания маятника можно считать гармоническими. Уравнение движения математического маятника имеет вид

.  (11.40)

 Знак «минус» указывает на то, что возвращающая сила направлена к положению равновесия, а смещение отчисляется от положения равновесия, потому знак ускорения противоположен знаку смещения.

Проводя аналогию между математическим и упругом маятниками, можно записать, что коэффициент жесткости, и период колебаний имеют следующий вид:

  и . (11.41)

Отсюда вытекает, что период колебаний математического маятника не зависит от амплитуды колебаний (для малых значений угла отклонений ) и массы маятника, а определяется его длиной и ускорением свободного падения тел в данном месте Земли.


Потенциальная энергия